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Abstract— In this paper, a novel approach for calculation of
discontimdties of transmission lines is presented. This approach
is flexible, simple and effective. For calculation of mtdtiple dk-
continuities or taking into account the thickness of the obstacles,
it is only necessary to transfer the relationship between the
electric and magnetic field components from one dkcontinuity
to another and match them on the last one. The method of
transfer may be arbitrary, it may also be realized by using
the well-known method of lines or others methods. Both single
and multiple waveguide discontinuities are calculated and the
computed resnlts are in good agreement with the literature.
Examples of finite thickness waveguide discontinuities are also
given. The proposed method may be readily used to calculate
microstrip discontinuities. Extension to discontinuities of other
types of transmission lines can also be performed.

I. INTRODUCTION

A LTHOUGH THERE are a great number of methods to
analyze the discontinuity problems of waveguides and

transmission lines, the problems of multiple discontinuities
and finite thickness discontinuities are still very complicated
to analyze. One method is to calculate the isolated individual
discontinuity and neglect the influence from all others and

then consider the interactions between them [1], [2]. This
method is quite complicated when the distance between the

discontinuities are close and the contributions of higher order

modes cannot be neglected. Another method of calculation is
to simulate all the discontinuities as a whole. This method
will lead to a complicated 3-D problem which is often very
time-consuming. To facilitate the solution of this problem, a
novel approach is proposed in which the field relationship is
transfered from one discontinuity to another and matched only

at the last discontinuity. This approach appears rather simple
and easy to handle and it is described below.

H. THEORY

The proposed approach is based on the concept of making

calculations from one end of the transmission line to the

other. The relationship between the tranverse field components

is calculated at the first discontinuity at one end of the

transmission line and then transfered from one discontinuity

to the next. In this way we arrive at the last discontinuity,
at the other end of the transmission line, and match the field

components there. In principle, the transmission line is not
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necessarily a straight one, it may be curved or it cart have

other shapes with the only restriction that the above transfer
be numerically completed. The modeled tmnsmission line may

also be arbitrary, it may be a section of wi]veguide, microstrip
line or other planar/nonplanar lines. The numerical method in
the procedure transfer may also be different and it may be
chosen as is found convenient.

1) General Formulation: In general, the procedure of so-
lution may be formulated as follows. For simplicity we
assume that only the dominant mocles can propagate in

the first section (I) and the last section (N + 1) and
in the other sections this restriction does not exist. At

first we fix the folowing relationship of transverse field

components at the input port 1 in Fig. 1. We assume that
only the dominant mode exists at this port and hence it
is easy to obtain the following equation

El~ = [Al]Hlt. (1)

After the transfer through the first section I to plane 2,
we have

E2t = [A2][A1]H2,i. (2)

By this way we may transfer this relationship from one

plane to another and finally arrive to the last plane n

and we have

Em, = [A~][An_l] . . . [Az][A1]Hmt. (3)

It is assumed that the length of section N + 1 is long
enough to attenuate all the higher order modes and only
the dominant mode can exist at plane n + 1 and we then
have

E~+l,t = [An+l]Hn.+l,t. (4)

001 8–9480/95$04.00 0

Transferring this relationship back to
have an additional field equation

Emt = [AL][&+d&.

the plane n we

(5)

A deterministic equation may be obtained from (3) and

(5)

[Am][An_l] . . . [A,][AI] - [A;n][A~+,] = O. (6)

Solving this equation we may obtain the needed S-
parameters of the cascaded discontinuities. The required
line lengths of the first section I and last section IV+ 1
may be determined from the propagation constants of
the lowest higher modes of these sections.
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Fig. 1. Illustration of a section of rectangular waveguide, containing
multiple discontinuities.

2) Examples of rectangular waveguide discontinuity
problems: In the following we choose the well-known

method of lines to analyse some rectangular waveguide

discontinuity problem as an example. The waveguide
is assumed to be empty, that is filled only with air. It
is easy to extend this case to other more complicated,
dielectric filled systems. As shown in Fig. 1, the axis
of the waveguide is assumed to be along the z-axis.

The time dependence of the fields e~tit is suppressed

everywhere in this paper. For the E-plane discontinuity

excited by 7’1310 waves, the following relations exist

between the field components and the potential T

EZ=O HZWT

azv
EYN~ Hy. —

(7)

axay “

Since the discontinuities along the y-axis are absent,

the dependence of the potential on the y-axis may be

described by sin(~y/a), where a is the dimension of

the waveguide along y-axis and we need only to make

the ratio of ~/!i2 continuous at the discontinuities. The

potential V is governed by the following differential

equation

In our calculation, the entire waveguide is divided into
N subregions with (N – 1) discontinuities and the

boundaries of the subregions should contain the sur-
faces of the discontinuities as shown in Fig. 1. After

discretization according to the standard procedure in
[4] with the discretized potential line along the z-
axis and transformation to the spectral domain, we
have an uncoupled ord@ary differential equation of the
transformed potential 0, in each subregion

(9)

fori=l,2,3, . . ..N.
The discretization distance h is kept constant in all

subregions of the waveguide to garanty the convergence

of the calculation [5]. The calculation should begin from
the first subregion with its left boundary tending to minus

infinity. Since there exists only one mode which can
propagate and all higher modes attenuate along the input
and output port of the waveguide, we may choose a

plane with z = .zOat a distance far enough from the first
discontinuity and consider that only the dominant mode
exist at this plane and we have

(lo)

at z = ,zO where ~1 is the propagation constant of
the dominant mode in subregion 12 r is the reflection

coefficient of the same mode and 01 is the solution of

(9) of the first subregion 1.
Th~ next -step is to transfer the potential ratio

(d@i/cZz)/@i from Zo, ,zI,.. . to .zN. To this end

we should use the following formula of transfer within
the same subregion

+

~ /.=..= Hi ~k 1.=., (11)

with

H, = [;i . sinh(~icli) + cosh(~icli) . Hi_l]

[

–1
sinh(~idi )

. cosh(~, dt) + . H,-l
ii 1 (12)

and

+

~ 1.=.,.,= Hi-I ~@t /--, (13)

where d3 = .zi – z,– 1. By this way, we may transfer
the relationship between the potential and its derivative
of the same subregion i from z = .z– I to z = Zz.

At each boundary z = Zi we should also establish the
relationship between the potential and its derivatives of

the next subregion (i+ 1) from the matrix ~, IZ=Z,. This
procedure will be discussed in the next section. By this
way we can transfer from one subregion to another and
arrive at the boundary z = ,zN of the subregion N
with the field matrix HN. The field matrix of the last
subregion N + 1 at cross section z = ~AI~~ which is
far enough away from the last distinuity N and hence

all the higher order modes are attenuated and only the
dominant mode exists. Therefore we have

+
d@N+l/dz lz=z~+, = ‘.jB2@N+l Iz=z,v+, (14)

where ,B2 is the propagation constant of the dominant
mode of the output port waveguide.
By using (12) we may transfer this relationship to the
boundary z = zN and find out the matrix HNhl 1.Ez~.

The boundary conditions at the last boundary may be
fulfilled by using the following formula

(HN – HN+I) I.=.n= O (15)

and the reflection constant r can readily be solved from
this deterministic equation.
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Fig. 2. Dependence of the normrdized susceptance of a diaphragm in
a rectangular waveguide on the ratio d/b with b/ AO as a parameter,

our results, + + ++ data from reference [3]
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Fig. 3. Dependence of the normalized susceptance of a step with a
diaphragm in a parrdlel plate waveguide on the ratio d/b with b as a
parameter, our results, + + ++ data from Ref. [21

3) Fulfillment of boundary conditions on the metallic walls
at the discontinuities: In order to establish the relation-
ship between the potential and its derivatives of the

subregion (i+ 1) from the matrix H; 1~=~%of the previous

subregion i at the plane of discontinuities .z = z~,
the boundary conditions at the discontinuities should

be fulfilled, To this end, we should remember that

the boundary conditions at the metallic surface require
dIP/dz = O and at the slot the matrix Hi continuous
and all this should be completed in the original domain.
Let us consider the general case of displacement of two
waveguides 1 and 2 with different widths in which s is
the common aperture of these two waveguides, S1 and
S2 are respectively that parts of apertures of waveguides

1 and 2, short circuited by metallic walls. It is clear that

at apertures s 1 and S2 we have dV/dz = O. The first

step is to take the inverse of 12i and transform it back
into original domain

iii =G%.~lz=z.
,z=zt *

(16)

The next step lies in splitting the Gi l~=~c matix into
two parts, corresponding to the apertures s and ‘s1 of

8
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Fig. 4. Dependence of the normalized susceptanct of a step with a finite
thickness diaphragm in a parallel plate wavegmde on the ratio D/Ao with
b = O.lAO and d/b as a parameter, our results, + + -F+
data from Ref. [2]. . . the imaginary part obtained from the solution of the
normalized susceptance B.

4)

waveguide 1

and hence at the common aperture s

it,,
d$, .

= G%,, . ~-
dz Z=Z. “

(18)
Z=zt

Since the fields are continuous at the common apertures,

(18) is also valid for subregion i + I at z = Zi. The ne~

step is to construct the relationship between potential V

and its derivative for subregion i + 1 at z = zi

with Fz+l,~ = [G,,s]-’. The needed matrix ~,+, Iz=.,

is obtained by transformation of matrix 1%+1 I,=Z, into

the spectral domain.
The proposed method of simulation may be readily

extended to the microstrip discont imtities by using the

waveguide model [6]. It is also possible to solve the 3D
problem of rnicrostrip discontinuities through two di-

mensional discretization at each pli~ne of discontinuities
and perform the above procedures.

One advantage of this approach is that it is easy to for-
mulate and the computer algorithm becomes quite simple.
Another advantage lies in that the order of the matrix in the
final determinantal equation is independent on the number

of discontinuities and hence the simulation time increases

insignificantly in the case of many discorttinuities.

III. NUMERICAL RESUI.TS

Some examples of numerical calculation for l?-plane dis-

continuities in waveguides are performed by using the above

described method. In Fig. 2 a diaphragm in a rectangular

waveguide is simulated and the results of the normalized
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Fig. 5. Dependence of the magnitude of S11 on the distance d between
two displacements of a rectangular waveguide with the displacement b’ as a
parameter and b = 0.3Ag, a = 0.8A0.
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Fig. 6. Dependence of the phase of S11 on the distance d between two
displacements of a rectangular waveguide with the displacement b’ as a
parameter and b = 0.3Ag, a = 0.8A0.

shunt susceptance B are found to be in good agreement

with the literature [3]. The data for a step with an infinite

thin diaphragm in a parallel plate waveguide are shown

in Fig. 3 and Fig. 4 contains a finite thickness diaphragm

with comparisons to reference [2]. Good agreement is seen

from the results. The dotted lines in Fig. 4 refer to the

imaginary part obtained from the solution of the normalized

susceptance B. This part is not small and cannot be neglected

when d/A. is greater than 0.1. This means that in such
cases the discontinuities cannot be represented by a single
shunt susceptance, The results of double displacements in a

rectangular waveguide with dimensions a x b are shown in

Figs. 5 and 6. In Fig. 5 the magnitudes of S1l depend on the

distance between these two displacements d and tend to zero

when d = 0.25J. This may be explained by superposition

of the reflected waves from these two displacements. The

results of a displacement and three diaphragms in a section

of a rectangular waveguide are shown in Figs. 7 and 8.

IV. CONCLUSION

A novel approach for calculation of multiple and finite

thickness discontinuities in transmission lines is presented. It
is simple, flexible, and easy to handle. By using this approach,

the computer algorithm is simplified and the numerical model-
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Fig. 7. Dependence of the magnitude of S11 on the distance d between a
displacement and three diaphragms in a rectangular waveguide with bll /b as
a parameter and b = 0.3A~, b’/b = 0.5, a = 0.8A0, d’ = 0.05A0.
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Fig. 8. Dependence of the phase of S11 on the distance d between a
displacement and three diaphragms in a rectangular waveguide with b“ /b
as a parameter and b = 0.3 A9, b’/b = 0.5, a = 0.8 Ao, d’ = 0.05A0.

ing becomes more efficient. This feature is more evident when

a large number of discontinuities are simulated. The effective-

ness of this approach is proved by numerical calculations of

multiple discontinuities in waveguides. The proposed approach

may readily be used to calculate microstrip discontinuities

using the waveguide model. Extension to discontinuities of

other types of transmission lines can also be realized.
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