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Abstract—1In this paper, a novel approach for calculation of
discontinuities of transmission lines is presented. This approach
is flexible, simple and effective. For calculation of multiple dis-
continuities or taking into account the thickness of the obstacles,
it is only necessary to transfer the relationship between the
electric and magnetic field components from one discontinuity
to another and match them on the last one. The method of
transfer may be arbitrary, it may also be realized by using
the well-known method of lines or others methods. Both single
and multiple waveguide discontinuities are calculated and the
computed results are in good agreement with the literature.
Examples of finite thickness waveguide discontinuities are also
given. The proposed method may be readily used to calculate
microstrip discontinuities. Extension to discontinuities of other
types of transmission lines can also be performed.

1. INTRODUCTION

LTHOUGH THERE are a great number of methods to

analyze the discontinuity problems of waveguides and
transmission lines, the problems of multiple discontinuities
and finite thickness discontinuities are still very complicated
to analyze. One method is to calculate the isolated individual
discontinuity and neglect the influence from all others and
then consider the interactions between them [1], [2]. This
method is quite complicated when the distance between the
discontinuities are close and the contributions of higher order
modes cannot be neglected. Another method of calculation is
to simulate all the discontinuities as a whole. This method
will lead to a complicated 3-D problem which is often very
time-consuming. To facilitate the solution of this problem, a
novel approach is proposed in which the field relationship is
transfered from one discontinuity to another and matched only
at the last discontinuity. This approach appears rather simple
and easy to handle and it is described below.

II. THEORY

The proposed approach is based on the concept of making
caiculations from one end of the transmission line to the
other. The relationship between the tranverse field components
is calculated at the first discontinuity at one end of the
transmission line and then transfered from one discontinuity
to the next. In this way we arrive at the last discontinuity,
at the other end of the transmission line, and match the field
components there. In principle, the transmission line is not
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necessarily a straight one, it may be curved or it can have
other shapes with the only restriction that the above transfer
be numerically completed. The modeled transmission line may
also be arbitrary, it may be a section of waveguide, microstrip
line or other planar/nonplanar lines. The namerical method in
the procedure transfer may also be different and it may be
chosen as is found convenient.

1) General Formulation: In general, the procedure of so-
Iution may be formulated as follows. For simplicity we
assume that only the dominant modes can propagate in
the first section (I) and the last section (N + 1) and
in the other sections this restriction does not exist. At
first we fix the folowing relationship of transverse field
components at the input port 1 in Fig. 1. We assume that
only the dominant mode exists at this port and hence it
is easy to obtain the following equation

Ev = [A1]Hys. M

After the transfer through the first section I to plane 2,
we have

Eoy = [Az][A1]Has. @)

By this way we may transfer this relationship from one
plane to another and finally arrive to the last plane n
and we have

Ent = [An][An—1] -+ [A2][A1] Hps. €

It is assumed that the length of section N + 1 is long
enough to attenuate all the higher order modes and only
the dominant mode can exist at plane n+ 1 and we then
have

En+1,t = [A'n+1]Hn+1,t- (4)

Transferring this relationship back to the plane n we
have an additional field equation

Ent = [A;,,] [An-}-l]fint' o)

A deterministic equation may be obtained from (3) and

®)
[An][An-1] .- [Ae][A1] = [A7][Anta] = 0. (©)

Solving this equation we may obtain the needed S-
parameters of the cascaded discontinuities. The required
line lengths of the first section I and last section NV + 1
may be determined from the propagation constants of
the lowest higher modes of these sections.
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Fig. 1. Ilustration of a section of rectangular waveguide, containing

multiple discontinuities.

2)

Examples of rectangular waveguide discontinuity
problems: In the following we choose the well-known
method of lines to analyse some rectangular waveguide
discontinuity problem as an example. The waveguide
is assumed to be empty, that is filled only with air. It
is easy to extend this case to other more complicated,
dielectric filled systems. As shown in Fig. 1, the axis
of the waveguide is assumed to be along the z-axis.
The time dependence of the fields e’*? is suppressed
everywhere in this paper. For the E-plane discontinuity
excited by T'E1g waves, the following relations exist
between the field components and the potential ¥

E,=0 H,~V
oy A (7N
By~ 0z Hy ~ OxOy’

Since the discontinuities along the y-axis are absent,
the dependence of the potential on the y-axis may be
described by sin(wy/a), where a is the dimension of
the waveguide along y-axis and we need only to make
the ratio of %% /¥ continuous at the discontinuities. The
potential ¥ is governed by the following differential
equation
2 2 2

i aay‘f ) ®)
In our calculation, the entire waveguide is divided into
N subregions with (N — 1) discontinuities and the
boundaries of the subregions should contain the sur-
faces of the discontinuities as shown in Fig. 1. After
discretization according to the standard procedure in
[4} with the discretized potential line along the z-
axis and transformation to the spectral domain, we
have an uncoupled ordinary differential equation of the
transformed potential @ in each subregion

o2
%j;’ — k2P, =0 )

for¢ = 1,2,3,....N.

The discretization distance % is kept constant in ail

subregions of the waveguide to garanty the convergence

of the calculation [5]. The calculation should begin from

the first subregion with its left boundary tending to minus

infinity. Since there exists only one mode which can
propagate and all higher modes attenuate along the input
and output port of the waveguide, we may choose a
plane with z = 2o at a distance far enough from the first
discontinuity and consider that only the dominant mode
exist at this plane and we have |

2 Bu(l+r) 2
d®y/dz = —j———--@ 10
1/dz = —j G- o (10
at z = 29 where f; is the propagation constant of

the dominant mode in subregion I, r is the reflection
coefficient of the same mode and ®; is the solution of
(9) of the first subregion I.
The next step is to transfer the potential ratio
(d®;/dz)/®; from z, 2z1,... to zy. To this end
we should use the following formula of transfer within
the same subregion
dd; -
—— = H; - ®, |,—, 11
e o=, (an
with

H, = [l_ﬂ'l . Slnh(l;zdl) -+ COSh(Eidi) . Hi—l]
-1

cosh(k,d,) + %d«) “H, (12)
and
dd; -
|z=z1_1= Hi—-l . @1 !z:zl_l (13)

dz

where d, = 2; — z,—1. By this way, we may transfer
the relationship between the potential and its derivative
of the same subregion ¢ from z = z;_; to 2z = z,.
At each boundary z = z; we should also establish the
relationship between the potential and its derivatives of
the next subregion (i+ 1) from the matrix H,|,—.,. This
procedure will be discussed in the next section. By this
way we can transfer from one subregion to another and
arrive at the boundary z = zy of the subregion N
with the field matrix Hy. The field matrix of the last
subregion NV 4 1 at cross section z = zyy; which is
far enough away from the last distinuity N and hence
all the higher order modes are attenuated and only the
dominant mode exists. Therefore we have

dq)N—Fl/dZ ,z=zN+1= _jﬂ2§N+1 |Z=ZN+1 (14)

where (3, is the propagation constant of the dominant
mode of the output port waveguide.

By using (12) we may transfer this relationship to the
boundary z = zy and find out the matrix Hy 1 |,—,,.
The boundary conditions at the last boundary may be
fulfilled by using the following formula

(Hy — Hyn41) |2=2,= 0 (15)

and the reflection constant r can readily be solved from
this deterministic equation.
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Fig. 2. Dependence of the normalized susceptance of a diaphragm in
a rectangular waveguide on the ratio d/b with b/Ao as a parameter,
our results, + + +-+ data from reference [3]
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Fig. 3. Dependence of the normalized susceptance of a step with a
diaphragm in a parallel plate waveguide on the ratio d/b with b as a
parameter, our results, + + +-+ data from Ref. [2]

3) Fulfillment of boundary conditions on the metallic walls
at the discontinuities: In order to establish the relation-
ship between the potential and its derivatives of the
subregion (¢+1) from the matrix H;|,—,, of the previous
subregion i at the plane of discontinuities z = z,
the boundary conditions at the discontinuities should
be fulfilled. To this end, we should remember that
the boundary conditions at the metallic surface require
d¥/dz = 0 and at the slot the matrix H; continuous
and all this should be completed in the original domain.
Let us consider the general case of displacement of two
waveguides 1 and 2 with different widths in which s is
the common aperture of these two waveguides, s1 and
so are respectively that parts of apertures of waveguides
1 and 2, short circuited by metallic walls. If is clear that
at apertures s; and sy we have dU/dz = 0. The first
step is to take the inverse of H; and transform it back
into original domain

o a7,

\I;i = -
2=z, G dZ

. (16)

Z2==2,

The next step lies in splitting the G; |,~., matrix into
two parts, corresponding to the aperatures s and 's; of
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Fig. 4. Dependence of the normalized susceptance of a step with a finite
thickness diaphragm in a parallel plate wavegmde on the ratio D/Agwith
b = 0.1X¢ and d/b as a parameter, . our results, + + ++
data from Ref. [2]... the imaginary part obtained from the solution of the
normalized susceptance B.

waveguide 1

\I—}i s Gi s Gi EEN d‘l—;l’s
- = ' ) . d 17
(qjivﬂ ) Z=z, <G’?Sls Gi7sl Oz 2=z, ( )
and hence at the common aperture s
= d“I_}z s
\I,z,s = Gz,s . “(’1_7 (18)
z=2z, z z2=2z,

Since the fields are continuous at the common aperture s,
(18) is also valid for subregion 7+ 1 at z = z;. The next
step is to construct the relationship between potential ¥

and its derivative for subregion ¢ + 1 at 2 = z;
(————dq';;'s ) = <F1+1,s 0) . (LI’i+1,s )
0 t 0 0 ]'I“z+1732
= Py (Llli-l—l,s )
‘ Vitt,s,

with F, 41,5 = [Gi,s]7 1. The needed matrix Hyq1 |o=,
is obtained by transformation of matrix Fi4 |,—., into
the spectral domain.

4) The proposed method of simulation may be readily
extended to the microstrip discontinuities by using the
waveguide model [6]. It is also possible to solve the 3D
problem of microstrip discontinuities through two di-
mensional discretization at each plane of discontinuities
and perform the above procedures.

-

=2,

(19)

z=z;

One advantage of this approach is that it is easy to for-
mulate and the computer algorithm becomes quite simple.
Another advantage lies in that the order of the matrix in the
final determinantal equation is independent on the number
of discontinuities and hence the simulation time increases
insignificantly in the case of many discontinuities.

III. NUMERICAL RESULTS

Some examples of numerical calculation for E-plane dis-
continuities in waveguides are performed by using the above
described method. In Fig. 2 a diaphragm in a rectangular
waveguide is simulated and the results of the normalized
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Fig. 5. Dependence of the magnitude of S;; on the distance d between
two displacements of a rectangular waveguide with the displacement b’ as a
parameter and b = 0.3, a = 0.8Xp.
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Fig. 6. Dependence of the phase of S11 on the distance d between two
displacements of a rectangular waveguide with the displacement b’ as a
parameter and b = 0.3Ay, @ = 0.8A0.

shunt susceptance B are found to be in good agreement
with the literature [3]. The data for a step with an infinite
thin diaphragm in a parallel plate waveguide are shown
in Fig. 3 and Fig. 4 contains a finite thickness diaphragm
with comparisons to reference [2]. Good agreement is seen
from the results. The dotted lines in Fig. 4 refer to the
imaginary part obtained from the solution of the normalized
susceptance B. This part is not small and cannot be neglected
when d/Ao is greater than 0.1. This means that in such
cases the discontinuities cannot be represented by a single
shunt susceptance. The results of double displacements in a
rectangular waveguide with dimensions a X b are shown in
Figs. 5 and 6. In Fig. 5 the magnitudes of S;; depend on the
distance between these two displacements d and tend to zero
when d ~ 0.25). This may be explained by superposition
of the reflected waves from these two displacements. The
results of a displacement and three diaphragms in a section
of a rectangular waveguide are shown in Figs. 7 and 8.

IV. CONCLUSION

A novel approach for calculation of multiple and finite
thickness discontinuities in transmission lines is presented. It
is simple, flexible, and easy to handle. By using this approach,
the computer algorithm is simplified and the numerical model-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 11, NOVEMBER 1995

lslll

025 -

SYPTEEEE U FNTE SUETI SENER NN TN PR |
0000504 01502 025 03 035

d/A
Fig. 7. Dependence of the magnitude of S11 on the distance d between a

displacement and three diaphragms in a rectangular waveguide with '/ /b as
a parameter and b = 0.3Xg, b' /b = 0.5,a = 0.8Ap,d' = 0.05)¢.
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Fig. 8. Dependence of the phase of Si; on the distance d between a
displacement and three diaphragms in a rectangular waveguide with b" /b
as a parameter and b = 0.3Ag, b’ /b = 0.5,a = 0.8Xg, d’ = 0.05X¢.

ing becomes more efficient. This feature is more evident when
a large number of discontinuities are simulated. The effective-
ness of this approach is proved by numerical calculations of
multiple discontinuities in waveguides. The proposed approach
may readily be used to calculate microstrip discontinuities
using the waveguide model. Extension to discontinuities of
other types of transmission lines can also be realized.
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